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Abstract

A novel Karhunen–Lo�eve (KL) least-squares model for the supersonic flow of an inviscid, calorically perfect ideal

gas about an axisymmetric blunt body employing shock-fitting is developed; the KL least-squares model is used to

accurately select an optimal configuration which minimizes drag. Accuracy and efficiency of the KL method is com-

pared to a pseudospectral method employing global Lagrange interpolating polynomials. KL modes are derived from

pseudospectral solutions at Mach 3.5 from a uniform sampling of the design space and subsequently employed as the

trial functions for a least-squares method of weighted residuals. Results are presented showing the high accuracy of the

method with less than 10 KL modes. Close agreement is found between the optimal geometry found using the KL

model to that found from the pseudospectral solver. Not including the cost of sampling the design space and building

the KL model, the KL least-squares method requires less than half the central processing unit time as the pseudo-

spectral method to achieve the same level of accuracy. A decrease in computational cost of several orders of magnitude

as reported in the literature when comparing the KL method against discrete solvers is shown not to hold for the

current problem. The efficiency is lost because the nature of the nonlinearity renders a priori evaluation of certain

necessary integrals impossible, requiring as a consequence many costly reevaluations of the integrals.
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1. Introduction

Computer-assisted multi-disciplinary design and optimization in the aeronautical engineering commu-

nity is a promising area of current research. The optimization of air vehicles has often relied on low fidelity
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aerodynamic models due to the need for rapid evaluation of aerodynamic design variables such as lift, drag,

or heat transfer. Unfortunately, the use of low fidelity models can lead to unacceptable uncertainties in the

final optimal design, especially where design safety margins are tight [1]. In addition, low fidelity models
often do not provide the complete flow field information such as pressure, temperature, and velocity dis-

tributions, acoustic signature, shock wave location, which the designer may require. For these reasons, high

fidelity models such as the Euler or Navier–Stokes equations are often required. For most problems, these

model equations can be solved only after discretization.

Brooks [2] and Brooks and Powers [3,4] describe an adaptation of the work of Kopriva et al. [5] for a

shock-fitted pseudospectral method for the numerical approximation to the steady-state inviscid supersonic

flow around a blunt body geometry. The unsteady Euler equations and associated boundary conditions are

cast in the form of a system of ordinary differential equations (ODEs) and integrated to a long time steady-
state solution. Grid convergence of the error in the pseudospectral approximation measured against a fine

grid approximation exhibits high accuracy and a spectral convergence rate. The shock is fitted since ap-

proximation of discontinuous solutions with high-order polynomials exhibit the Gibbs phenomenon in the

form of global oscillations in the solution [6]. These oscillations can cause the numerical scheme to become

unstable and attempts to remove the oscillations by spectral filtering or by addition of artificial viscosity

significantly reduces the accuracy of the numerical method. The more common alternative of shock cap-

turing, while generally stable and non-oscillatory, yields only first-order accuracy.

A major difficulty in employing discrete solvers in a multi-disciplinary design process is the large central
processing unit (CPU) requirements of these codes. It is not uncommon for discrete solutions to three-

dimensional flows around complex aircraft configurations to require on the order of 10 or more hours of

CPU time per steady-state solution [1], and these solutions are likely not fully resolved. Complete resolution

of complex flow structures could require considerably more CPU time. A design incorporating multiple

disciplines, e.g., aerodynamics, structures, controls, may easily have hundreds or even thousands of design

variables. While interdisciplinary coordination schemes using varying fidelity models [7] help to alleviate the

CPU cost associated with interdisciplinary dependence, the aerodynamics discipline alone could still in-

volve hundreds or more design variables. For this reason, current gradient-based numerical optimizers can
be prohibitively expensive when used directly with discrete solvers of high fidelity models, and approxi-

mation becomes necessary.

One popular approximation technique for the design of complex, multi-variable problems is the response

surface approximation [8]. Response surfaces typically approximate quantities such as the lift and drag of

the vehicle as a function of the design variables, e.g., geometric parameters, in terms of simple functional

forms. An advantage of the response surface method is that both objective function and gradient evaluation

are rapid, on the order of 1 s or less. Furthermore, polynomial approximation of the objective function

ensures that the gradients are continuous. This increases the efficiency of the numerical optimizer in the
sense that fewer iterations may be needed to reach an optimum. Two disadvantages of the response surface

method are a potential lack of accuracy in capturing the system response by a simple function and also the

absence of detailed information about the flow field. Flow field information may be needed for design of a

thermal protection system, for coupling with a structural code in static and aeroelastic design, for inverse

vehicle design in sonic boom mitigation, acoustic or radar signature reduction, or for shock wave placement

for efficient supersonic/hypersonic propulsion.

A recently developed method which does yield detailed flow field information by solution of the gov-

erning equations such as the Euler or Navier–Stokes equations is the adjoint method [9–11] adopted from
control theory [12]. This method is computationally efficient for gradient-based optimizers since objective

function gradients with respect to an arbitrary number of design variables can be computed exactly by

solving the governing equations plus an adjoint equation. Since the adjoint equation is of similar com-

plexity as the governing equations, each iteration of the optimizer regardless of the number of design

variables is equivalent in computational cost to two flow field solutions. The fact that the computational
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cost of the adjoint method does not increase with the number of design variables is a significant advantage

over the response surface method whose computational cost increases with increasing number of design

variables. Although still in development, the adjoint method appears to be promising as an accurate and
efficient means of multi-disciplinary, multi-variable optimal design. Nevertheless, the adjoint method has

the disadvantage of requiring that a unique adjoint equation be derived and solved for each new design

objective function that may be formulated.

Another approximation technique is the Karhunen–Lo�eve (KL) method. This technique is a method of

weighted residuals where the trial functions are eigenfunctions of the averaged auto-correlation of previous

numerical flow-field solutions. It can be shown that the KL decomposition yields an optimal set of or-

thonormal basis functions in the sense that the fewest number of functions of all possible bases are required

for a given level of accuracy in reconstructing the original set of data. Employing the KL modes as the trial
functions of a Galerkin [13], orthogonal collocation [14], or least-squares [15] method of weighted residuals

reduced dimension models have been developed which yield accurate solutions to partial differential

equations for a computational cost several orders of magnitude lower than discrete solvers for the same

level of accuracy. Park and Jung [16], for example, report CPU times of 7.5 h and 11 min, respectively, for

arriving at an optimal control law for magnetic suppression of natural convection using a pseudospectral

and a KL Galerkin method. In the case of Park and Jung [16], the nonlinearity of their problem was

quadratic, so that it was possible to evaluate the spatial integrals in the KL Galerkin model only once at the

time when the model was built. This led to a significant reduction in the degrees of freedom of the KL
Galerkin model over the pseudospectral solver and consequent reduction in computational cost.

Advantages of the KL method over response surfaces are generation of detailed flow field information

and potential increase in accuracy. The KL method also has advantages over the adjoint method in that the

KL model is independent of the design problem formulation. This flexibility in specifying the design

problem is an important attribute for an optimal design code [17].

We next review some applications of the KL theory in control, optimization, and modelling of thermo-

fluid systems. The KL decomposition has been used in conjunction with the Galerkin method of weighted

residuals to develop approximate models of turbulent fluid mechanical phenomena, e.g., Aubry et al. [18],
and Sirovich and Park [19,20]. The first use of the KL method for a control application was by Chen and

Chang [21], where it was used to control spatiotemporal patterns on a catalytic wafer using experimentally

determined KL modes. Independently, Park and Cho [22] developed a KL Galerkin model of a nonlinear

heat equation for control or parameter estimation [23–28]. The KL Galerkin method has also been used to

approximate Navier–Stokes solutions for flow control [29–31] applications. In order to avoid the difficulty of

employing the Galerkin method for nonlinear problems, Theodoropulou et al. [14] successfully implemented

an orthogonal collocation method with numerical KL modes for the optimization of rapid thermal chemical

vapor deposition systems in one dimension. LeGresley and Alonso [15] used a KL least-squares model of the
Euler equations in a finite volume formulation to optimize the pressure distribution around an airfoil in

subsonic flow and more recently extended the method via domain decomposition to include the high sub-

sonic region with mild shocks [32]. A KL model for the high speed flow over a two-dimensional blunt body

using a subspace projection method and domain decomposition was developed by Lucia [33]. In the domain

decomposition method, the region around the shock is isolated and a KL model is developed for the smooth

region of the flow, while the region containing the shock can be solved using the full system model.

The first step in generating a KL model is to develop a set of numerical solutions to the governing

equations for a range of design variables or in this case, a single design variable. In general, high accuracy
solutions are desirable so that more high order, low amplitude KL modes can be accurately resolved from

the set of numerical solutions. Any consistent and stable numerical method could be chosen to generate

high accuracy solutions; the pseudospectral method described by Brooks and his colleague [2,4] is the one

chosen for this study. The pseudospectral method has the advantage of an exponential grid convergence

rate for sufficiently smooth solutions; consequently, relative to finite difference or finite element methods
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with polynomial convergence rates, pseudospectral methods can generally achieve the same absolute error

with a smaller computational cost, or for the same computational effort, pseudospectral methods generate a

more accurate solution than finite difference or finite element methods. In addition, since the solution is
known in terms of Lagrange interpolating polynomials, the KL modes can also be expressed in terms of

Lagrange polynomials and integration of the KL modes necessary for the least-squares method can be

performed exactly by means of Gaussian quadrature, thus maintaining the high accuracy of the method.

The second step in the development of the KL model is to perform a KL decomposition on the char-

acteristic solution set generated by the flow solver. The KL decomposition, also called proper orthogonal

decomposition (POD), appears to have been developed independently in the 1940s by several researchers

including Karhunen [34] and Lo�eve [35]. Lumley [36] proposed the KL decomposition as a rational pro-

cedure for the extraction of coherent structures in a turbulent flow field. The KL decomposition is also
closely related to the singular value decomposition and principal component analysis used in data com-

pression and image processing [37]. As originally introduced by Lumley, the KL decomposition was im-

practical for more than one spatial dimension. It was not until Sirovich [38] introduced the method of

snapshots that the KL decomposition became practical for highly resolved, three-dimensional flows.

The final step in the development of the KL model is to approximate the governing equations and

boundary conditions in a series expansion of the KL modes and solve for the coefficients in the expansion

via a least-squares, Galerkin, or collocation method of weighted residuals. For the current paper, a KL

least-squares model will be developed.
In the remainder of this paper, the three main steps just described for developing a KL least-squares

model are presented for a model partial differential equation. Following this, the blunt body problem is

posed. Since the error in the blunt body pseudospectral solver was found to decrease uniformly over a range

of Mach numbers, which is not the case when the geometry is varied, a KL model is built by varying the

Mach number. Ten pseudospectral solutions, also referred to as snapshots, are generated for 10 different

values of Mach number, and the corresponding 10 KL modes are presented. The KL least-squares model of

the blunt body problem is subsequently presented along with error convergence plots with respect to the

number of KL modes used in the model. The error in the KL model is measured against a highly resolved
solution from the pseudospectral solver. A single-variable optimal design problem is then solved using both

the KL least-squares model and the pseudospectral solver. Ten pseudospectral solutions are generated for

10 different values of a single geometric design variable, and the corresponding 10 KL modes are presented.

Error convergence plots with respect to the number of KL modes are also presented for this model. The

accuracy and efficiency of the KL model is compared to that of the pseudospectral solver for the single-

variable optimal design problem. Comparison of the operation count for the KL least-squares model versus

the pseudospectral method are also presented.
2. KL design optimization strategy

2.1. Step 1: Flow solver

The first step in developing a KL model for use in optimization is to generate a set of K characteristic

solutions which span the design space of interest in the problem. In the current study, the design space is

parameterized by a single geometric variable, b. The method can be extended to multi-variable optimization
problems. Let us consider the following system of time-dependent partial differential equations, boundary

conditions, and initial conditions in two space dimensions, n and g, defined over the domain

X : fn 2 ½0; 1�; g 2 ½0; 1�g; ð1Þ
and bounded by S,
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along with the initial conditions,

yðn; g; 0Þ ¼ y0ðn; gÞ; ð4Þ
where for the current problem, yðn; g; sÞ : R3 ! R10, f : R3 ! R10, and g : R3 ! R11. The function

yðn; g; s; bÞ consists of six terms, yqðn; g; s; bÞ, q ¼ 1; . . . ; 6, defined over X and four terms, yqðn; g; s; bÞ,
q ¼ 7; . . . ; 10, defined over S. All of the algebraic constraints, Eq. (3), are boundary conditions and thus

apply only on S. Although Eq. (2) is time-dependent, for the optimal design problem only steady-state
solutions for various values of b are considered. Solving the time-dependent equation to a relaxed steady

state is a convenient numerical solution technique and computationally easier than directly solving the

formally steady problem, although computationally less efficient.

The system of equations in Eqs. (2) and (3) along with initial conditions, Eq. (4) are solved for K distinct

values of the geometric variable, bk, k ¼ 1; . . . ;K, at steady state. We make the following definition:

XðnÞ ¼ Xq
k ðn; gÞ ¼ yq n; g; sð ! 1; bkÞ; q ¼ 1; . . . ; 6; k ¼ 1; . . . ;K ð5Þ

and construct the following K � 6 matrix of functions XðnÞ:

XðnÞ ¼
X 1
1 ðnÞ � � � X 1

KðnÞ
..
. . .

.

X 6
1 ðnÞ X 6

KðnÞ

264
375: ð6Þ

The functionXðnÞ contains a solution for a particular geometry bk in each of its columns; the rows ofXðnÞ
are composed of a particular independent variable for the span of the geometries. Here we take n ¼ n; g.

2.2. Step 2: Karhunen–Lo�eve Theory

The second step in the development of the KL model is to perform a separate KL decomposition on each

row of XðnÞ. Since there are six rows corresponding to the four dependent flow field variables plus the two

physical coordinates, the KL decomposition will be performed six times. Brooks [2] gives details of a standard

analysis showing that the eigenfunctions, uq
kðnÞ; k ¼ 1; . . . ;K, of the kernel Rqðn; n0Þ ¼ 1

K

PK
k¼1 X

q
k ðnÞX

q
k ðn0Þ,

are orthonormal and form on average the most efficient linear basis, in a least-squares error sense, for con-

structing a truncated series approximation to any of the Xq
k ðnÞ; k ¼ 1; . . . ;K, where q ¼ 1; . . . ; 6, denote the

dependent variables of the problem.

2.3. Step 3: Least-squares method of weighted residuals

The final step in developing a KL model of a differential equation is to expand the yqðn; g; s ! 1; bÞ,
q ¼ 1; . . . ; 6, defined over X in terms of the KL modes, uq

kðn; gÞ; q ¼ 1; . . . ; 6; k ¼ 1; . . . ;K, from step 2. Let
us consider a steady-state form of Eq. (2),

bf by; oby
on

;
oby
og

� �
¼ 0; ð7Þ

bg by; oby
on

;
oby
og

� �
¼ 0; ð8Þ
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where byðn; gÞ is of dimension six, corresponding to yqðn; g; s ! 1; bÞ, q ¼ 1; . . . ; 6, bf is of dimension four

also defined over X, and bg is of dimension eight and defined over S. For the current supersonic blunt body
problem, the six terms in byðn; gÞ are the density, pressure, two velocity components, and two physical grid
coordinates, the four components of bf are the steady-state form of the Euler equations and the eight

components of bg are the appropriate nonlinear boundary conditions. The dimension of bg is reduced from

the dimension of g because linear boundary conditions are not included in bg since they are automatically

satisfied by the KL approximation as will be elaborated in a subsequent section. The reduction in the

dimensions for by and bf compared to y and f, respectively, is a result of eliminating the characteristic

formulation for several time-dependent boundary conditions in favor of the Euler equations, and dropping

the evolution equations for the physical grid coordinates over X in favor of algebraic expressions for the

physical grid coordinates only at the body surface. Since the problem in Eqs. (7) and (8) consists of 12
equations and six unknowns, it is overconstrained. We are thus motivated to solve the problem in a least-

squares sense. Each component of byðn; gÞ, byqðn; gÞ; q ¼ 1; . . . ; 6, in Eqs. (7) and (8) is approximated by a

truncated series expansion in the KL eigenfunctions, uq
kðn; gÞ, i.e.,

byqðn; gÞ � eyqðn; gÞ ¼ XL

i¼1

aqiu
q
i ðn; gÞ; q ¼ 1; . . . ; 6; L6K; ð9Þ

so that the aqi , i ¼ 1; . . . ; L, q ¼ 1; . . . ; 6, are the unknowns to be determined. Substituting the approximationeyqðn; gÞ from Eq. (9) into Eqs. (7) and (8), we get the following residual error function for bf , ef :
ef ¼ bf aqi ;u

q
i ;
ouq

i

on
;
ouq

i

og

� �
; q ¼ 1; . . . ; 6; i ¼ 1; . . . ; L; ð10Þ

and the residual error function for bg, eg,
eg ¼ bg aqi ;u

q
i ;
ouq

i

on
;
ouq

i

og

� �
; q ¼ 1; . . . ; 6; i ¼ 1; . . . ; L: ð11Þ

We now define the following weighted error:

e ¼
X4

q¼1

xq
f

Z
X

ffiffiffiffiffiffiffiffiffi
eqf e

q
f

q
dXþ

X8

q¼1

xq
g

Z
S

ffiffiffiffiffiffiffiffiffi
eqge

q
g

p
dS; ð12Þ

where eqf , q ¼ 1; . . . ; 4, are the components of ef , and eqg, q ¼ 1; . . . ; 8, are the components of eg. The ap-

proximation coefficients aqi in Eq. (9) are chosen in order to minimize e in Eq. (12). The xq
f and xq

g in Eq.

(12) are constant weights which are chosen to enhance convergence to a global minimum for e. Since the

problem of choosing an optimal set of weights xq
f and xq

g is difficult, for the current work, the weights were

chosen by trial and error. The problem of minimizing e is a multi-variable minimization problem which

is solved using a standard Newton method. The IMSL routine, DUMINF, is employed to minimize e in
Eq. (12) for the current work.
3. Blunt body description and pseudospectral solver

Each of the three steps in developing a KL least-squares model of the Euler equations for the supersonic

flow over a blunt body are now performed. We repeat essential portions of [2,4], which are needed for

exposition of the KL technique.
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3.1. Governing equations in physical coordinates

The two-dimensional, axisymmetric Euler equations for a calorically perfect ideal gas are, in dimen-
sionless form:
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where q is the density, p is the pressure, u and w are the velocities in the radial and axial directions, re-
spectively, r is the radial coordinate, z is the axial coordinate, t is the time, and c is the ratio of specific heats.

The dimensional form for pressure, p�, density, q�, and r� and z� components of velocity, u� and w�, re-

spectively, are recovered from the following equations:

p� ¼ pp�1; ð17Þ
q� ¼ qq�
1; ð18Þ
u� ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1=q

�
1

q
; w� ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1=q

�
1

q
; ð19Þ

where dimensional quantities are denoted by a �, and freestream quantities are denoted by 1. The di-

mensional space and time variables are

z� ¼ zL�; r� ¼ rL�; ð20Þ
t� ¼ tL�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1=q�

1

q
; ð21Þ

where L� is the length of the body. The freestream flow is at zero angle of attack so that the component of

freestream velocity in the r-direction, u1 ¼ 0. Since the dimensionless pressure, p1, and density, q1, are

equal to unity, the component of freestream velocity in the z-direction, w1, can be expressed as the fol-

lowing function of c and the freestream Mach number, M1:

w1 ¼ ffiffiffi
c

p
M1: ð22Þ

Defining the entropy to be s, we have, for a calorically perfect ideal gas with zero freestream entropy,

s ¼ ln
p
qc

� �
; ð23Þ

where the entropy is non-dimensionalized by the specific heat at constant volume, c�v,

s� ¼ sc�v: ð24Þ
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3.2. Computational and physical coordinates

The physical domain of the blunt body problem, Fig. 1, is mapped to the computational domain,
n 2 ½0; 1�, g 2 ½0; 1�, in such a way that the body surface lies along the computational boundary ðn; 0Þ, the
shock lies along the boundary ðn; 1Þ, the symmetry axis is a third boundary at ð0; gÞ, and the fourth

boundary at ð1; gÞ is a supersonic outflow. The transformation between the physical coordinates ðr; zÞ and
computational coordinates ðn; gÞ is taken to be

rðn; g; sÞ ¼ RðnÞ þ
g dZðnÞ

dn hðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRðnÞ
dn

� �2

þ dZðnÞ
dn

� �2
r ; ð25Þ
zðn; g; sÞ ¼ ZðnÞ �
g dRðnÞ

dn hðn; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRðnÞ
dn

� �2

þ dZðnÞ
dn

� �2
r ; ð26Þ

where the nonlinear function hðn; sÞ must be specified to completely determine the mapping and RðnÞ and ZðnÞ
are known functions. After manipulation, the transformations in Eqs. (25) and (26) yield the following identity:

hðn; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzðn; 1; sÞ � zðn; 0; sÞÞ2 þ ðrðn; 1; sÞ � rðn; 0; sÞÞ2

q
; ð27Þ

from which it is seen that hðn; sÞ is the distance in r � z space between the body surface, g ¼ 0, and the

shock, g ¼ 1, along lines of constant n. We see that Eqs. (25) and (26) form an implicit algebraic equation

for the coordinate transformation. It is apparent from Eqs. (25) and (26) that the functions RðnÞ and ZðnÞ
parameterize the blunt body surface, g ¼ 0, i.e.,

rðn; 0; sÞ ¼ RðnÞ; ð28Þ
zðn; 0; sÞ ¼ ZðnÞ; ð29Þ
Fig. 1. Schematic of shock-fitted high Mach number flow over an axisymmetric blunt body including computational (n; g) and physical

(r; z) coordinates.



Fig. 2. Gauss–Lobatto Chebyshev computational grid for the shock-fitted blunt body.
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and that the body surface is not a function of time. The transformations in Eqs. (25) and (26) have been

constructed so that lines of constant n are normal to the body surface and have no curvature in r � z space.
The computational grid is shown in Fig. 2, where the nodes in the n and g directions correspond to the lo-

cation of the zeroes of a Chebyshev polynomial of order N and M respectively. This choice of nodes is not
unique and is made because global Lagrange polynomial approximations of general non-periodic functions

defined on this grid were found in Brooks [2] to yield a more uniform and overall lower error than a uniform

grid. For the current problem, we have chosen the following functions to parameterize the blunt body surface:

RðnÞ ¼ n; ð30Þ
ZðnÞ ¼ n1=b; ð31Þ

where the domain for the geometric parameter b is restricted to b 2 ð0; 1Þ.

3.3. Governing equations and boundary conditions in computational coordinates

After transforming the Euler equations, zero mass flux boundary condition at the body surface, g ¼ 0,
Rankine–Hugoniot relations at the shock boundary, g ¼ 1, supersonic outflow condition at n ¼ 1, and

centerline boundary conditions at n ¼ 0, from r � z space to n� g space, the governing equations and

boundary conditions can be expressed in the form of Eqs. (2) and (3), where

yðn; g; sÞ ¼

qðn; g; sÞ
uðn; g; sÞ
wðn; g; sÞ
pðn; g; sÞ
rðn; g; sÞ
zðn; g; sÞ
vBTðn; sÞ
qðn; 0; sÞ
pðn; 0; sÞ
vðn; sÞ

26666666666664

37777777777775
; ð32Þ
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In Eqs. (32) and (33), the first equation is the continuity equation, the second and third equations are the

n and g momentum equations, the fourth is the energy equation, the fifth and sixth are the r and z grid
evolution equations, the seventh, eighth and ninth equations are the characteristic equations for tangential

velocity, density, and pressure, respectively, at the boundary, g ¼ 0, and the 10th equation is the shock
acceleration equation. The algebraic equations in Eq. (34) are the remaining boundary conditions necessary

for a well-posed problem. The contravariant velocity components bu and bw in Eqs. (32)–(34) are:

bu ¼ on
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oz
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bw ¼ og
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þ w
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ð35Þ

c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the dimensionless acoustic speed, vBT is the velocity component tangent to the body surface,

and v is the component of the shock velocity in the g-direction. The vectors eg, eST, and eSN are the unit

vectors in the g, shock tangent, and shock normal directions, respectively, defined as follows:
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where er and ez are the unit vectors in the r and z directions, respectively. The velocity vector is defined as

v ¼ uer þ wez; ð39Þ
so that, from Eq. (22), the freestream velocity vector is

v1 ¼ ffiffiffi
c

p
M1ez: ð40Þ

The functions, dS , d1, A1, A2, and A3 are
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Finally, the following standard relations between the metrics and inverse metrics will be necessary in

formulating the least-squares KL model,
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where J is the determinant of the metric Jacobian matrix.



Fig. 3. Contours of Mach number for flow over the blunt body for b ¼ 0:5, M1 ¼ 3:5, 17� 9 grid.
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3.4. Pseudospectral numerical technique and solutions

In order to solve the system of partial differential-algebraic equations in Eqs. (32)–(34), the spatial de-

rivatives q, u, w, p, r, and z are approximated in terms of global Lagrange interpolating polynomials defined

on the grid points ni; gj
	 


, i ¼ 0; . . . ;N , j ¼ 0; . . . ;M , thus Eqs. (32)–(34) are reduced to a system of or-

dinary differential-algebraic equations. Furthermore, by deriving explicit expressions for the algebraic

variables in terms of the differential variables, the system of differential algebraic equations is converted into

a system of ODEs which are then solved using a standard ODE solver. Contours of Mach number are

shown in Fig. 3. The sonic line, M ¼ 1, is predicted in Fig. 3 as well as the fact that the outflow velocity is

indeed supersonic as required in the derivation of the outflow boundary condition. Further details of the
numerical method can be found in [2,4] along with code verification and validation.
4. Blunt body KL modes

Ten solutions, also referred to as snapshots in the context of the KL method, are generated for 10

different values of M1 chosen uniformly in the range M1 2 ½3; 4�, with the geometric parameter b fixed at

0.5. From these 10 snapshots, 10 KL modes, uq
k and associated eigenvalues kqk , k ¼ 1; . . . ; 10, q ¼ 1; . . . ; 6,

are calculated for each of the primitive variables, q, u, w, and p and the physical coordinates r and z, where
subscripts indicate the number of the mode and superscripts dictate to which variable the KL modes and

eigenvalues belong. The method of snapshots, Sirovich [38], was used to generate the KL modes and ei-

genvalues. A plot of the eigenvalues of density as a function of KL mode number are shown in Fig. 4, while

the 10 normalized KL modes are shown in Fig. 5. A rapid decay in the magnitude of the eigenvalues and a

progressively richer topologically structured set of KL modes is observed as the mode number increases.



Fig. 4. Eigenvalues of density for 10 snapshots over the range M1 2 ½3; 4�.
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5. Least-squares method

In the KL least-squares method, the steady-state density, eqðn; gÞ, r and z velocity components, euðn; gÞ
and ewðn; gÞ, respectively, pressure, epðn; gÞ, and physical grid coordinates erðn; gÞ and ezðn; gÞ are approxi-

mated in terms of the KL modes as follows,

eqðn; gÞ ¼ XK
k¼1

a1ku
1
kðn; gÞ;

euðn; gÞ ¼ XK
k¼1

a2ku
2
kðn; gÞ;

ewðn; gÞ ¼ XK
k¼1

a3ku
3
kðn; gÞ;

epðn; gÞ ¼ XK
k¼1

a4ku
4
kðn; gÞ;

erðn; gÞ ¼ XK
k¼1

a5ku
5
kðn; gÞ;

ezðn; gÞ ¼ XK
k¼1

a6ku
6
kðn; gÞ:

ð46Þ

Employing Eq. (46), the KL least-squares formulation of the blunt body problem is written in the form

of Eqs. (10) and (11), where
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Fig. 5. Ten KL eigenmodes of density with associated eigenvalues, k, generated from 10 snapshots in the range M1 2 ½3; 4�. (a)
k1 ¼ 11:4, (b) k2 ¼ 9:16� 10�4, (c) k3 ¼ 2:28� 10�6, (d) k4 ¼ 1:03� 10�9, (e) k5 ¼ 3:70� 10�13, (f) k6 ¼ 2:48� 10�15, (g)

k7 ¼ 2:38� 10�15, (h) k8 ¼ 1:02� 10�15, (i) k9 ¼ 7:56� 10�16 and (j) k10 ¼ 3:52� 10�16.
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and
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; ð48Þ

whereed ¼ ev � eeSNjðn;1Þ; ð49Þ
ed1 ¼ v1 � eeSNjðn;1Þ; ð50Þ
evBNðnÞ ¼ eu oez
on
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� ew oer
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�����
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; ð51Þ
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bew ¼ eu og
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The approximate metric terms

on
oer ; on

oez ; og
oer and

og
oez

are found from the inverse metrics in Eq. (45) and the relations in Eq. (46), e.g.,

on
oer ¼ � 1

J
oez
og
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The spatial derivatives in Eq. (47) are calculated by taking derivatives of the quantities in Eq. (46), e.g.,

o
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The terms eeST and eeSN in Eqs. (48)–(50) are found by substituting the KL approximations for the metrics
og=oer and og=oez into Eqs. (37) and (38). In Eq. (48), the coordinates rðn; 0Þ and zðn; 0Þ are specified from
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the choice of b which fixes the body surface via the parameterization in Eqs. (30) and (31). The linear

boundary conditions in Eq. (34),

ow
on

����
ð0;g;sÞ

¼ 0;
op
on

����
ð0;g;sÞ

¼ 0; ujð0;g;sÞ ¼ 0;
oz
on

����
ð0;g;sÞ

¼ 0; and rjð0;g;sÞ ¼ 0

are not included in Eq. (48), since each of the KL modes satisfies them exactly; this is apparent upon noting

that the KL modes are linear combinations of the snapshots, Sirovich [38]. In addition, at steady state we

have vðn; sÞ ¼ 0, so that the evolution equations for physical grid coordinates and the equation for the
shock velocity in Eqs. (32) and (33) are not considered. The physical grid coordinates over the domain X are

included implicitly in the functions bf and bg through the metrics and explicitly in the last two components ofbg at the body surface, g ¼ 0.

We define the following error functions over the domain X:

eqf ¼ bf q; q ¼ 1; . . . ; 4; ð55Þ

where bf q is the qth component of the function bf . At the boundary S, the error function is defined as:

eqg ¼ bgq; q ¼ 1; . . . ; 8; ð56Þ

where bgq is the qth component of bg. A total error, e, is formed from Eqs. (55) and (56) as follows:

e ¼
X4

q¼1

Z
X
xq

f
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eqf e

q
f

q
dXþ

X8

q¼1

Z
S
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g

ffiffiffiffiffiffiffiffiffi
eqge

q
g

p
dS; ð57Þ

where xq
f ¼ xq

g ¼ 1, q ¼ 1; . . . ; 3, x4
f ¼ x4

g ¼ 0:1, x5
g ¼ x6

g ¼ 1, and x7
g ¼ x8

g ¼ 1000 are constant weights

chosen to enhance convergence to a global minimum for e. The coefficients in Eq. (46) are chosen via a

Newton method such that the total error, e defined in Eq. (57), is minimized. Due to the nature of the

nonlinearity in the functions eqf and eqg in Eq. (57), it is not possible to factor the coefficients, aqk , q ¼ 1; . . . ; 6,
k ¼ 1; . . . ; L, outside of the integral operator; consequently, whenever one of the coefficients changes, the

integrals must be reevaluated to determine e. This is different from the work by other researchers such as

Park and Jung [16], where the nonlinearities in the problem were such that the coefficients could be factored
outside the integrals. As a consequence, for Park and Jung, the integrals could be evaluated once and for all

at the time of model construction since the functions uq
i , ou

q
i =on, and ouq

i =og, q ¼ 1; . . . ; 6, k ¼ 1; . . . ; L, are
all known once the KL decomposition has been performed.
6. Results for KL least-squares model for supersonic blunt body flow

6.1. Error convergence for 10 snapshot KL model, M1 2 [3,4], b ¼ 1=2

Convergence of the L1½X� error in qðn; gÞ as a function of the number of KLmodes is shown in Fig. 6 for a

KL model built from 10 snapshots. The 10 snapshots are uniformly distributed over the range M1 2 ½3; 4�,
while the geometry is fixed at b ¼ 0:5. The snapshots are generated using the pseudospectral solver described

in [2,4] on both a 17� 9 grid and a 22� 12 grid. The error is assessed by comparison with a highly resolved

33� 17 grid solution. After the fourth mode for the 17� 9 grid KL model and after the fifth mode for the

22� 12 grid KL model, there is no further improvement in the accuracy of the model, since the KL model

accuracy has reached the level of error in the samples as shown by the dark lines in Fig. 6.
The distribution of L1½X� error in qðn; gÞ for the KL model over the entire range, M1 2 ½3; 4�, is shown

in Fig. 7 for the KL model built from 10 17� 9 grid pseudospectral snapshots. Once again, the L1½X� error



Fig. 7. KL model L1½X� error in q for a 17� 9 grid, M1 2 ½3; 4�, b ¼ 0:5. A highly resolved 33� 17 grid solution is the standard for

the reported errors.

Fig. 6. KL model L1½X� error in q for both a 17� 9 and 22� 12 grid,M1 ¼ 3:5; b ¼ 0:5. A highly resolved 33� 17 grid solution is the

standard for the reported errors.
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in qðn; gÞ decreases with increasing number of KL modes until the approximate accuracy of the samples is

reached around 5� 10�5. Once the accuracy of the snapshots has been reached, there is no further im-

provement in the accuracy with increasing number of KL modes, since the higher-order modes do not

contain relevant information; they are corrupted by numerical error in the KL modes. For finer grid so-

lutions than the 22� 12 grid, the KL model accuracy became very sensitive to the xq
I in Eq. (57); therefore,

the 22� 12 grid KL model is the finest grid KL model employed in the current work.
7. Single variable design problem

To illustrate the use of a KL model for an optimal design problem, the power law body described

parametrically in Eqs. (30) and (31) is considered, and the value of b is sought which minimizes the drag

coefficient, CD for fixed freestream Mach number, M1 ¼ 3:5, and ratio of specific heats, c ¼ 7=5. For the
axisymmetric problem, the equation for CDðbÞ is
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CDðbÞ ¼
4

cM2
1

Z 1

0

pr
or
on

����
g¼0

dn: ð58Þ

The integral in Eq. (58) is evaluated by using Gauss quadrature to achieve high accuracy in CD com-

parable to the accuracy in p and r from Eq. (58).

7.1. Error convergence for 10 snapshot KL model, b 2 [1/3,1/2], M1 ¼ 3:5

Before finding the value of b which minimizes CD from Eq. (58), a KL model is built with 10 uniformly
spaced snapshots that span the design space in which the minimum is expected, that is b 2 ½1=3; 1=2� for
M1 ¼ 3:5. Here, the snapshots are generated using the pseudospectral solver described in [2,4] on a 17� 9

grid. A plot of the eigenvalues of density as a function of KL mode number is shown in Fig. 8, while the 10

normalized KL modes are shown in Fig. 9. There is a rapid decrease in the magnitude of the eigenvalues

and the KL modes become topologically richer as the mode number increases. A convergence plot of the

L1½X� error in qðn; gÞ with respect to the number of KL modes is shown in Fig. 10, where the error is

measured against a highly resolved 33� 17 grid solution of the pseudospectral solver. After the fourth

mode there is no further improvement in the accuracy of the model, since the KL model accuracy has
reached the level of error in the samples. Although the accuracy of the KL model is slightly better than the

pseudospectral method when the ninth and tenth modes are included, this is fortuitous and is not expected

in general, since the accuracy of the KL model should only be as accurate as the solution samples from

which the modes were computed.

The distribution of L1½X� error in qðn; gÞ for the KLmodel over the entire range, b 2 ½1=3; 1=2� is shown in

Fig. 11. Once again, the L1½X� error decreases with increasing number of KL modes until the approximate

accuracy of the samples is reached around 5� 10�5. Once the accuracy of the snapshots has been reached,

there is no further improvement in the accuracy with increasing number of KLmodes, since the higher-order
modes do not contain relevant information; they are corrupted by numerical error in the KL modes.

7.2. Minimum drag body shape

Since we are interested in the drag coefficient, CD, in Fig. 12, we show the error convergence in CD as a

function of number of KL modes in the model over the range of geometric parameter b 2 ½1=3; 1=2�. The
Fig. 8. Eigenvalues of density for 10 snapshots over the range b 2 ½1=3; 1=2�.



Fig. 9. Ten KL eigenmodes of density with associated eigenvalues, k, generated from 10 snapshots in the range b 2 ½1=3; 1=2�. (a)
k1 ¼ 11:1, (b) k2 ¼ 9:9� 10�3, (c) k3 ¼ 1:5� 10�5, (d) k4 ¼ 6:8� 10�8, (e) k5 ¼ 5:1� 10�10, (f) k6 ¼ 7:6� 10�12, (g) k7 ¼ 1:2� 10�13,

(h) k8 ¼ 5:0� 10�15, (i) k9 ¼ 1:4� 10�15 and (j) k10 ¼ 6:0� 10�16.
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KL model was built from 10 snapshots distributed uniformly over the range b 2 ½1=3; 1=2�; the snapshots

were solved on a 17� 9 grid. Again, the error is measured against a highly resolved 33� 17 grid solution of

the pseudospectral solver. It is seen that the error in the KL model is higher than the error in the

pseudospectral solver over part of the range of b and lower over another part even with all 10 modes used in
the KL model. It may be that there is fortuitous cancelling of errors in the integration to find CD, which



Fig. 10. KL model L1½X� error in q for a 17� 9 grid,M1 ¼ 3:5; b ¼ 0:5. A highly resolved 33� 17 grid solution is the standard for the

reported errors.

Fig. 11. KL model L1½X� error in q for a 17� 9 grid, b 2 ½1=3; 1=2�, M1 ¼ 3:5. A highly resolved 33� 17 grid solution is the standard

for the reported errors.
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over part of the range of b favors the pseudospectral method and over another part favors the KL model.

This is likely, since the plot of L1½X� error in qðn; gÞ from Fig. 11 shows convergence in number of KL

modes to the level of accuracy in the snapshots.

In Figs. 13 and 14, we show the plot of CD versus b for KL models using various numbers of KL modes

compared to CD from the pseudospectral solver on the same 17� 9 grid. It is seen that for the KL model

with one or two modes, the prediction is fairly poor; in fact, for the case of one KL mode, the trend of

decreasing CD with increasing b is the opposite of what it should be. Including at least three KL modes in
the model yields very good agreement with the actual solution. There is a bias error in the prediction of CD

versus b for KL models with greater than four modes. The bias error is on the order of the error for the

pseudospectral prediction on a 17� 9 grid, Fig. 11, from which the KL model was developed, so that this

bias error is within the error tolerance of the KL model.



Fig. 13. CD versus b for the KL model built from 10 snapshots on a 17� 9 grid, M1 ¼ 3:5.

Fig. 12. KL model L1½X� error in q for a 17� 9 grid, b 2 ½1=3; 1=2�, M1 ¼ 3:5. A highly resolved 33� 17 grid solution is the standard

for the reported errors.
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7.3. Efficiency of Karhunen–Lo�eve model versus pseudospectral solver

To calculate efficiency, we plot the accuracy versus CPU time in seconds. For the pseudospectral solver,
increasing solution accuracy is accomplished by refining the grid. For the KL model, there are two ways to

increase accuracy: (1) increase the number of modes in the model and (2) use KL modes in the model which

are taken from higher accuracy snapshots, i.e., refined grid solutions. It is evident from Fig. 6 that lower

accuracy in the snapshots, 17� 9 grid as compared to the 22� 12 grid, does not appreciably affect the

convergence rate until the baseline accuracy level is reached at 5� 10�5. Since the computational cost of the

KL model is dependent on both the number of nodes in the snapshots through the Gauss quadrature

formula as well as the number of modes, the KL model with the least computational cost for a given level of

accuracy is achieved by employing snapshots with this desired level of accuracy, and also using only the
minimum number of modes necessary to achieve the desired level of accuracy. That is, for greatest effi-

ciency, build the KL model from snapshots with the fewest nodes and retain the fewest modes possible



Fig. 14. Magnification of CD versus b for the KL model built from 10 snapshots on a 17� 9 grid, M1 ¼ 3:5.

Fig. 15. Error in the optimum CD versus CPU cost in seconds for the KL model and pseudospectral solver, M1 ¼ 3:5. A highly

resolved 33� 17 grid solution is the standard for the reported errors.
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which will still achieve the desired level of accuracy. Fig. 15 shows the error in the optimum CD versus CPU
time in seconds for the KL model and pseudospectral method along with linear fits of the data points to

make comparison easier. The data points representing the KL model are all from KL models built with 10

uniform snapshots over the range b 2 ½1=3; 1=2� but with the levels of grid refinement and number of modes

chosen for greatest efficiency, as just described. The various data points representing the pseudospectral

solutions are found by varying the number of grid points; finer grids yield more accurate results but also

take longer to compute. In Fig. 15 it is seen that the KL model and pseudospectral method predictions have

the same slope of error versus CPU time with the KL model a factor of two less CPU time for the same level

of accuracy. The calculations for both the pseudospectral solver and KL least-squares model were per-
formed on a Pentium III, 500 MHz PC with 320 MB of RAM.

Further understanding of the efficiency of the KL least-squares method can be gained by examining the

operation count required in the computational algorithm as compared to the pseudospectral method. For

the two-dimensional problem considered here, the KL method requires OðPLNMÞ operations, where P is the

number of times Eq. (57) is called by the routine DUMINF, L is the number of modes in the KL model, and
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N and M are the number of nodes in spatial direction n and g, respectively. The pseudospectral method

requires OðP 0ðN 2M þM2NÞÞ operations, where P 0 is the number of time steps required to reach a steady-

state solution. For the current problem, it was found that choosing L � N=2, M � N=2, and P ¼ P 0 yielded
KL and pseudospectral solutions with the same level of accuracy, so that the operation count for both the

pseudospectral and KL methods is OðPN 3Þ. This explains why the computational cost of the KL least-

squares method is nearly identical to that of the pseudospectral method for the same level of accuracy as

shown in Fig. 15.
8. Conclusions

In this study, a KL least-squares model of the Euler equations for supersonic flow over a blunt body was

developed. It is believed that this is the first study where the KL method has been applied to a supersonic

problem with shock-fitting. In addition, this work is novel in employing the KL method for a complex

geometry with a physical boundary which is not known a priori.

The error convergence rate for the KL model is rapid, with the maximum accuracy level achieved with

less than 10 KL modes for the single design variable problem posed. The maximum accuracy of the KL

model is theoretically limited to the accuracy of the snapshots from which the model was built, and nu-

merical results have been shown here which support this theoretical limit.
Due to the nature of the nonlinearity introduced into the problem through the grid metric terms, the

integrals in the KL least-squares model are recomputed for every iteration of the DUMINF minimization

routine; the result is a loss of efficiency such that the KL least-squares model is only slightly more efficient

than the pseudospectral solver. This lack of a clear computational advantage of the KL method over the

pseudospectral or other high accuracy numerical methods for certain nonlinear problems is something that

has not received adequate attention in the literature to this point. Results of other researchers, Park and

Jung [16], for example, which show a significant reduction in computational cost of the KL method over the

pseudospectral method are performed on problems with fixed domains and simple nonlinearities. By fixing
the physical domain of the problem, the grid metric terms in the governing equations are known a priori,

and the nonlinearity of the problem becomes only quadratic for the incompressible Euler or Navier–Stokes

equations. For sufficiently simple forms, it is possible to evaluate the integrals in the KL Galerkin model

once at the time of building the model, rather than every time that the model needs to be evaluated.

The sampling required for the KL model construction raises other issues about how many samples to

take and where in the design space to sample in order to guarantee a certain level of accuracy in the KL

model without making the sampling procedure prohibitively expensive. Other high accuracy solvers which

typically make use of polynomials or trigonometric basis functions do not require any sampling and may be
preferred over the KL method for certain applications.

Although the topology of the current problem is simple enough to permit a single domain solution, for

problems with slightly more complex geometries, multiple shocks, for example, a more general shock-fitting

scheme such as that proposed by Nasuti and Onofri [39], coupled with a multi-domain pseudospectral

method such as that proposed by Kopriva [40] is more useful. Although this work has shown promise in

fitting complex two-dimensional shock structures, much work remains to be done, such as extending the

method to three dimensions and to unstructured grids. Furthermore, for solutions with a large number of

embedded discontinuities whose location is not known a priori, a multi-domain method with shock-fitting
may become prohibitively complicated. Even if shock-fitting for problems with complex shock structures is

possible, the additional difficulty of changes in the physical domain of the problem causing a significant loss

in the efficiency of the KL model must be overcome. For these reasons, it is our opinion that the KL

method is best suited to problems where the integrals can be evaluated a priori, restricting its use to

problems with either fixed or simple moving boundaries. In addition, the computational cost incurred in the
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sampling portion of constructing the KL model should receive serious consideration before deciding to

employ the KL method for a specific application.
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